TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO]
O problema de hierarquia é um enigma, em física teórica, causado pela não-existência de uma explicação sobre os motivos da existência da grande discrepância entre os aspectos da força nuclear fraca e gravidade.[1]
Existem várias maneiras diferentes de descrever essa hierarquia, cada uma destaca uma característica diferente do problema. Aqui está um:exemplo:
- A massa do mais pequeno possível buraco negro, define o que é conhecido como o massa de Planck. Uma maneira mais precisa seria a definição é como uma combinação de constante gravitacional de Newton (), quantum constante h (leia "h-barra") de Planck e a velocidade da luz . A massa de Planck é a raiz quadrada de h-barra vezes dividido por .[2]
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
O problema de hierarquia é um enigma, em física teórica, causado pela não-existência de uma explicação sobre os motivos da existência da grande discrepância entre os aspectos da força nuclear fraca e gravidade.[1]
Existem várias maneiras diferentes de descrever essa hierarquia, cada uma destaca uma característica diferente do problema. Aqui está um:exemplo:
- A massa do mais pequeno possível buraco negro, define o que é conhecido como o massa de Planck. Uma maneira mais precisa seria a definição é como uma combinação de constante gravitacional de Newton (), quantum constante h (leia "h-barra") de Planck e a velocidade da luz . A massa de Planck é a raiz quadrada de h-barra vezes dividido por .[2]
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
As massas das partículas W e Z, as portadoras da força nuclear fraca, são cerca de 10 000 000 000 000 000 vezes menores que a massa de Planck. Assim, há uma enorme hierarquia nas escalas da massa de forças nucleares fracas e gravidade.
Mas ao tentar descobrir uma possível explicação para o problema acima, os físicos na década de 1970 perceberam que havia realmente um problema sério, até mesmo um paradoxo, por trás desse número. A questão, agora chamada do problema da hierarquia, tem a ver com o tamanho do campo de Higgs diferente de zero, o que por sua vez determina a massa das partículas W e Z.[4][5]
Em matemática, as equações de Yang-Mills-Higgs são um conjunto de equações parciais diferenciais não-lineares[1] para um campo de Yang-Mills[nota 1], dado por uma conexão, e um campo de Higgs[2], dado por uma seção de um fibrado vectorial. Estas equações são:
- x
As massas das partículas W e Z, as portadoras da força nuclear fraca, são cerca de 10 000 000 000 000 000 vezes menores que a massa de Planck. Assim, há uma enorme hierarquia nas escalas da massa de forças nucleares fracas e gravidade.
Mas ao tentar descobrir uma possível explicação para o problema acima, os físicos na década de 1970 perceberam que havia realmente um problema sério, até mesmo um paradoxo, por trás desse número. A questão, agora chamada do problema da hierarquia, tem a ver com o tamanho do campo de Higgs diferente de zero, o que por sua vez determina a massa das partículas W e Z.[4][5]
Em matemática, as equações de Yang-Mills-Higgs são um conjunto de equações parciais diferenciais não-lineares[1] para um campo de Yang-Mills[nota 1], dado por uma conexão, e um campo de Higgs[2], dado por uma seção de um fibrado vectorial. Estas equações são:
- x
Comentários
Postar um comentário